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Abstract. A standard quadratic optimization problem (QP) consists of finding (global) maximizers
of a quadratic form over the standard simplex. Standard QPs arise quite naturally in copositivity-
based procedures which enable an escape from local solutions. Furthermore, several important appli-
cations yield optimization problems which can be cast into a standard QP in a straightforward way. As
an example, a new continuous reformulation of the maximum weight clique problem in undirected
graphs is presented which considerably improves previous attacks both as numerical stability and
interpretation of the results are concerned. Apparently also for the first time, an equivalence be-
tween standard QPs and QPs on the positive orthant is established. Also, a recently presented global
optimization procedure (GENF - genetical engineering via negative fitness) is shortly reviewed.
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1. Introduction

A standard quadratic optimization problem (QP) consists of finding (global) max-
imizers of a quadratic form over the standard simplex, i.e. we consider (global)
optimization problems of the form

x′Ax→ max! subject tox ∈ 1, (1.1)

whereA is an arbitrary symmetricn× nmatrix; a′ denotes transposition; and1 is
the standard simplex inn-dimensional Euclidean space IRn,

1 = {x ∈ IRn : xi ≥ 0 for all i ∈ ν, e′x = 1} ,
whereV = {1, . . . , n} (of course, the region{y ∈ IRn : y ≥ o , e′y ≤ 1} can
always be represented by1 ⊆ IRn+1, introducing a slack variable). Here,e =∑

i∈V ei = [1, . . . ,1]′ while ei denotes thei-th standard basis vector in IRn.
Note that the maximizers of (1.1) remain the same ifA is replaced withA+γee′

whereγ is an arbitrary constant. So without loss of generality assume henceforth
that all entries ofA are non-negative. Furthermore, the question of finding maxi-
mizers of a general quadratic functionx′Qx+ 2c′x over1 can be homogenized in
a similar way by considering the rank-two updateA = Q+ec′ +ce′ in (1.1) which
has the same objective values.
? The author benefited from valuable suggestions by an anonymous referee.
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Of course, quadratic optimization problems like (1.1) – even regarding the de-
tection of local solutions – are NP-hard [32]. Nevertheless, there are several ex-
act procedures which try to exploit favourable data constellations in a systematic
way, and to avoid the worst-case behaviour whenever possible. One prototypical
example for this type of algorithms is specified in Section 3 below.

The paper is organized as follows: Section 2 contains a concise review on the
role of copositivity in characterizations of global optimality in general QPs. Theo-
retically in all cases, and for many important applications also practically, checking
copositivity can be reformulated in terms of standard QPs, providing support for
the justification of the terminology. Section 3 deals with an iterative procedure
proposed in [14], which consists of two parts. At first, a local solution of (1.1)
is generated by following the paths of feasible points provided by a dynamical
system borrowed from evolutionary modelling; in the second step, the procedure
escapes from an inefficient local maximizer in a way such that improvement in the
objective is guaranteed. This step has also an interesting interpretation in terms of
genetic evolution models.

In Section 4, an apparently new equivalence result is presented which shows
under which conditions exact penalization is possible in order to get rid of the
equality constraint defining the standard simplex: all local solutions (and the global
ones, respectively) of the resulting QP on the positive orthant exactly correspond
to local (and global) solutions of the standard QP. Section 5 is devoted to an
important application, namely to find a clique of maximum weight in an undi-
rected graph with weights on the nodes. Here, an exact one-to-one correspondence
between the local/global solutions of a whole class of standard QPs, and maxi-
mal/maximum weight cliques is established for the first time, by introducing a new
class of quadratic forms which can be viewed as a regularization of another class
recently introduced by Ramana and his coworkers [29] who followed an idea of
Lovász. In contrast to their approach, the proposed class avoids three shortcomings:
the possibility of jamming along paths generated by a popular local optimization
phase borrowed from population genetics; the occurrence of spurious solutions
which cannot be traced back to the sought cliques; and the lack of one-to-one corre-
spondence between local solutions and maximal cliques. Finally, Section 6 shortly
indicates how (also indefinite) standard QPs can emerge in portfolio selection
models along the lines of Markowitz [40].

2. From general to standard quadratic optimization problems

Consider the general quadratic maximization problem

f (x) = 1
2x′Qx+ c′x→ max! subject to x ∈ M , (2.2)

whereM = {x ∈ IRn : Ax ≤ b} with A anm× nmatrix andQ a symmetricn× n
matrix. We now review a well-known characterization for global optimality of a
Karush-Kuhn-Tucker pointx for (2.2) (see, e.g. [10, 15]). Using a novel approach
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via low-rank updates, the formulation presented here might be more appealing than
previous ones.

First, add a trivial non-binding constraint, i.e. the most elementary strict in-
equality 0< 1, to obtain slacksu as follows: denote bya′i the i-th row ofA and
put a0 = o. Similarly putb0 = 1 and enrichA = [a0|A′]′ = [o,a1, . . . ,am]′ as
well asb = [b0|b′]′ = [1, b1, . . . , bm]′. Finally, defineu = b− Ax ≥ o.

Then perform, for anyi ∈ {0, . . . ,m}, a rank-one update ofA and a rank-two
update ofQ, using the current gradientg= ∇f (x) = Qx+ c of the objective:

Di = u a′i − uiA and Qi = −ai g′ − g a′i − uiQ .
This gives a symmetricn×nmatrixQi and a matrixDi which is effectivelym×n
since itsith row is zero.

Denoting byJ (x) = {0, . . . ,m} \ I (x) the set of all non-binding constraints,
the following result is proved in [10]:

THEOREM 1 A Karush-Kuhn-Tucker pointx of (2.2) is a global solution if and
only if for all i ∈ J (x) = {i : ui > 0},

v′Qiv ≥ 0 if Div ≥ o ,

i.e. iffQi areD−1
i (IR

m+)-copositive. Ifv′Qiv < 0 for someDiv ≥ o, then

x̃ = x+ λv

is an improving feasible point forλ = ui/(a′iv) (if i = 0, i.e.λ = 1/0, this means
that (2.2) is unbounded).

Since determining whether or not a matrixQ is D−1(IRm
+)-copositive amounts

to the question whether the following homogeneous problem

v′(−Q)v→ max! subject toDv ≥ o ,

is unbounded, it is only a small step from a copositivity check to a standard QP.
Indeed, for ‘nice’D, this problem is easily decomposable (see [25] and cf. [23])
into a few standard copositivity problems of the form

x′Ax→ max! subject tox ≥ o ,

where the constrainte′x =∑i xi = 1 can be added without loss of generality, ren-
dering a standard QP. In fact, in order to determine an improving feasible direction
as in Theorem 1, it is not necessary to solve the latter problem to optimality, but
rather sufficient to determine a feasible pointx ∈ 1 with x′Ax > 0.

As an interesting aside, if the original problem (2.2) is itself already a standard
QP, then all copositivity checks from Theorem 1 can be reduced into a single one
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(see, e.g. Theorem 7 of [13]): ifx ∈ 1 is any feasible point, thenx is a global
maximizer ofx′Qx over1 if and only if the matrix

Q = (x′Qx)ee′ −Q
is IRn+-copositive. Of course, if one wants to reduce this to a standard QP as above,
one arrives at a trivial reformulation of global optimality, so that efficient reduction
strategies are still necessary to obtain an improving feasible direction. In the con-
text of checking copositivity, this can be accomplished by means of block pivoting
as in [12] where emphasis is laid upon reducing the dimensionality of the problem
at the cost of creating several subproblems of the same type. Transformed into the
language of standard QPs [14], one arrives then at the G.E.N.F.? approach [18]
described in the following section.

3. Global optimization of standard QPs: an evolutionary approach

First we concentrate on the evolutionary approach to local solutions of standard
QPs (1.1). To this end, consider the following dynamical system operating on1:

ẋi (t) = xi(t)[(Ax(t))i − x(t)′Ax(t)] , i ∈ V , (3.3)

where a dot signifies derivative w.r.t. timet , and a discrete time version

xi(t + 1) = xi(t) (Ax(t))i
x(t)′Ax(t)

, i ∈ V . (3.4)

Thestationary pointsunder (3.3) and (3.4) coincide, and all local solutions of (1.1)
are among these (see Theorem 2 below). Of course, there are quite many stationary
points, e.g. all verticese1, . . . ,en of 1. However, only thosex are serious candi-
dates for strict local solutions which are asymptotically stable, which means that
every solution to (3.3) or (3.4) which starts close enough tox, will converge tox as
t →∞.

Both (3.3) and (3.4) arise in population genetics under the nameselection equa-
tions where they are used to model time evolution of haploid genotypes,A being
the (symmetric) fitness matrix, andxi(t) representing the relative frequency of al-
lele i in the population. The Fundamental Theorem of Selection states that average
fitness, i.e. the objective functionx(t)′Ax(t) is (strictly) increasing over time along
trajectories [24], and moreover every trajectoryx(t) converges to a stationary point
[38].

To formulate the results, we need some notions and notations. First, consider
thegeneralized Lagrangian

L(x;λ,µ) = 1

2
x′Ax+ λ′x+ µ(e′x− 1)

? Genetic Engineering via Negative Fitness – I owe this acronym to P. Marcotte (personal
communication at the Trier WoGO ’97).
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of problem (1.1) where the multipliersλi andµmay have arbitrary sign. Call a crit-
ical pointx of the generalized Lagrangian ageneralizedKarush-Kuhn-Tucker point
if L(x;λ,µ) = 1

2x′Ax irrespective of the sign ofλi.
Next recall that a pointx ∈ 1 is said to be a(symmetric) Nash (equilibrium)

strategyif and only if y′Ax ≤ x′Ax for all y ∈ 1. Furthermore, a Nash strategyx
is said to be aneutrally stable strategy(NSS) if and only if

y′Ax = x′Ax impliesx′Ay ≥ y′Ay , (3.5)

and anevolutionarily stable strategy(ESS) if and only if the inequality in (3.5) is
strict for y 6= x.

For ease of reference, let us repeat now the characterization results from [16]
which links three different fields: optimization theory, evolutionary game theory,
and qualitative theory of dynamical systems.

THEOREM 2 LetA = A′ be an arbitrary symmetricn × n matrix andx ∈ 1.
Consider the following properties:

(a1) x is an evolutionarily stable strategy;
(a2) x is a strict local solution of (1.1);
(a3) x is an asymptotically stable stationary point of (3.3) and (3.4);
(b1) x is a neutrally stable strategy;
(b2) x is a local solution of (1.1);
(c1) x is a Nash strategy;
(c2) x is a Karush-Kuhn-Tucker point for (1.1);
(d1) x is a stationary point under (3.3) or (3.4);
(d2) x is a generalized Karush-Kuhn-Tucker point for (1.1).

Then the following implications and equivalences hold true:
(a1)⇔ (a2)⇔ (a3)⇒ (b1)⇔ (b2)⇒ (c1)⇔ (c2)⇒ (d1)⇔ (d2).

Note that a box-constrained QP (cf. the following section) inn variables can in
general have up to 2n strict local maximizers, whereas a standard QP has ‘only’(

n

bn/2c
)
≈ 2n/

√
πn/2 . (3.6)

This is an important consequence of the characterization of strict solutions of (1.1)
in terms of the ESS property: the system of supportsS = {i ∈ V : xi > 0} of
ESSsx forms an antichain w.r.t. set inclusion⊆, yielding as an upper bound for the
number of ESSs [11] the left-hand expression in (3.6), while the right-hand one is
an approximation for largen using Stirling’s formula. To formulate a sharpening
of the antichain property, we need some more notation: for a subsetS ⊆ V, we
shall denote the face of1 corresponding toS by

1S = {x ∈ 1 : xi = 0 if i /∈ S} (3.7)
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and its relative interior by

1◦S = {x ∈ 1S : xi > 0 if i ∈ S} . (3.8)

The proofs of the following results can be found in [13, 18].

THEOREM 3 If no principal minor ofA = A′ vanishes, then with probability one
any trajectory of (3.3) converges to a strict local solutionx of (1.1). Furthermore,
if x ∈ 1◦S (i.e. if S = {i ∈ V : xi > 0}), then
(a) y′Ay < x′Ax for all y ∈ 1S with y 6= x;
(b) 1◦S is contained in the basin of attraction ofx.

The dynamical systems (3.3) and (3.4) are frequently calledreplicator dynam-
ics, and are well suited for implementation in practical applications, see [14, 16,
49]. This is reflected also in theory by the result that (3.3) is most efficiently
approaching fixed points in the sense that it is a Shahshahani gradient system
[53], cf. the proof of Proposition 6 below. The discrete time version (3.4) also
corresponds to a particular instance of an algorithm widely popular in computer
vision. Theserelaxation labeling processesare closely related to artificial neural
network learning systems, and have found applications in a variety of practical
tasks, e.g. to solve certain labeling problems arising in the 3-D interpretation of
ambiguous line drawings [34, 48, 52]. Furthermore, dynamics (3.4) belongs to a
class of dynamical systems investigated in [6, 7], which has proven to be useful in
the speech recognition domain [36].

Although strictly increasing objective values are guaranteed as we follow tra-
jectories under (3.3) or (3.4), we could get stuck in an inefficient local solution
of (1.1). A global optimization procedure therefore must incorporate a decision
maker at a higher level than ‘blind’ nature. One attempt is based on the reduction
of problem dimension at the cost of generating a series of subproblems, which
seems to be a promising approach in view of the NP-hardness in quadratic pro-
gramming. This procedure is circumscribed bygenetic engineering via negative
fitness(G.E.N.F.) because of the following interpretation from [18].

From Theorem 3, a strict local solutionx of (1.1) must be a global one if all
xi > 0. Consequently, at an inefficient local solution necessarilyxi = 0 for some
i. In the usual genetic interpretation, this means that some alleles die out during
the selection process, and these are therefore unfit in the environment currently
prevailing. The escape step now artificially re-introduces some alleles which would
have gone extinct during the natural selection process. This is done via the negative
fitness approach: remove all alleles which are not unfit, i.e. alli ∈ S = {i ∈ V :
xi > 0}. Then determine fitnessminimizersin the reduced problem, i.e. consider
problem (1.1) withA replaced by

A = [γS − aij ]i,j∈V\S
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whereγS = maxi,j∈V\S aij is the maximum fitness of all extinct alleles. After
having obtained a local solutiony of this auxiliary problem, put

T = {j ∈ V \ S : yj > 0}
which can be viewed as the set of ‘truly unfit’ alleles. Now the following result can
be shown [14]:

THEOREM 4 Supposex is a local solution to the master problem (1.1) with
surviving allele setS = {i ∈ V : xi > 0}. Pick a disjoint setT of sizem ≥ 1
by ’negative genetic engineering’ as above. For alls ∈ S and t ∈ T , replace
asi with ati, remove all (other) unfitj ∈ T . Consider the reduced problemPt→s,
i.e. problem (1.1) inn−m variables for the so obtained matrixAt→s .
Then x is a global solution to the master problem (1.1) if and only if for all
(s, t) ∈ S × T , the maximum ofPt→s does not exceed the current best valuex′Ax.
In the negative, i.e. ifu′At→su > x′Ax for someu ∈ IRn−m in the standard simplex,
and if j ∈ T is chosen such that∑

p/∈T∪{s}
ajpup + 1

2
ajjus ≥

∑
p/∈T∪{s}

aqpup + 1

2
aqqus for all q ∈ T ,

then a strictly improving feasible pointx̃ is obtained as follows:

x̃q =
 ut if q = j ,

0 if q ∈ T ∪ {s} \ {j} ,
uq if q ∈ V \ T .

In view of the possible combinatorial explosion in effort with increasing number
of variables, this dimension reducing strategy seems to be promising: ifk is the
size ofS, the above result yields a series ofkm standard QPs inn − m variables
rather than inn. We are now ready to describe the algorithm which stops after
finitely many repetitions, since it yields strict local solutions with strictly increasing
objective values (cf. Theorem 3).

Algorithm

1. Start withx(0) = [1/n, . . . ,1/n] or nearby, iterate (3.4) until convergence;
2. the limit x = limt→∞ x(t) is a strict local solution with probability one; call

the escape procedure of Theorem 4 to improve the objective, if possible; denote
the improving point̃x;

3. repeat 1, starting withx(0) = x̃.
Of course, it remains to discuss what happens if the assumptions of Theorem 3
are not met. In this case, theory still guarantees convergence to a critical point of
problem (1.1), but this point is not necessarily asymptotically stable, or neutrally
stable, and therefore the result of step 2. above need not be a (strict) local solution
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to (1.1). The usual numerical cure (restart in a randomly chosen point close by)
helps if there are only finitely many stationary points, but else jamming cannot be
avoided with absolute certainty (see, e.g. Example 2.2 in [32], p. 58; and Figure 6,
case 1 in [9] for a phase portrait under the replicator dynamics). Another case where
too small perturbations could fail because there is a continuum of stationary points
can be generated with the matrix

A =
 2 2 1

2 2 3
1 3 2

 .
Here a trajectoryx(t) in the relative interior of1 exists which converges tox =
[12, 1

2,0]′. However,x′Ax = 2 < 2 + 6ε2 = (x + εu)′A(x + εu) whereu =
[−2,1,1]′, andx + εu ∈ 1 if 0 < ε < 1

4, hencex is no local solution. With
a high probability, perturbingx (e.g. to x + εu with arbitrarily small ε > 0)
yields immediately the global solutionx∗ = [0, 1

2,
1
2]′, but with (small) positive

probability, namely if a starting point in the sector left and below the trajectory
x(t) (see Figure 6, case 22 in [9]) is chosen, the process again gets jammed nearx.

Admitting only a finite number of stationary points is a robust feature among all
possible replicator dynamics with arbitrary symmetric matricesA. But in applica-
tions with a special structure like the maximum clique problem one cannot resort
to this argument. Indeed, a frequently used type of matrices lacks this property for
certain graphs, and Example 2.2 in [32] is of this type. See the end of Section 5 for
more details.

4. Standard QPs and quadratic optimization over the positive orthant

This section proposes an equivalence result which establishes exactness of penal-
ization w.r.t. the constrainte′x = 1.

As a motivating introduction, we consider a box-constrained QP (BCQP), i.e.
problem (2.2) with the special feasible setM = {x : ai ≤ xi ≤ bi , all i ∈ V}.
A recent survey of BCQP is [26]. For ease of exposition, let us now switch to
minimization problems. Every BCQP can be written in the following form

1

2
y′Qy+ c′y→ min ! subject to− e≤ y ≤ e. (4.9)

HereM = [−1,1]n, and following the nice homogenization idea of Ye [55], one
can get rid of the linear term, at the cost of introducing an additional variable:
indeed, consider the quadratic form in(t, y) ∈ [−1,1]n+1

f (t, y) = 1

2
y′Qy+ tc′y

Then one minimizer(t∗, y∗) of f over [−1,1]n+1 always satisfiest∗ = −1 (if
c′y∗ ≥ 0) or t∗ = 1 (if c′y∗ ≤ 0), so that eithery∗ or −y∗ is a solution to (4.9).
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Hence we can study without loss of generality the homogeneous BCQP

1

2
y′Qy→ min ! subject to− e≤ y ≤ e. (4.10)

Now shift the feasible boxM by puttingp = 1
2(e+ y) which yields a BCQP on

M = [0,1]n. Now, if Q has only non-negative entries, we arrive after dropping
unnecessary variables and rescaling at the BCQP

1

2
p′Cp− e′p→ min ! subject too≤ p ≤ b . (4.11)

These transformations lead us to investigate the orthant QP

h(p) = 1

2
p′Cp− e′p→ min ! subject top ≥ o . (4.12)

Note thatp = o can never be a local solution of (4.11) and (4.12). Further, let us
assume that the objective is strictly convex along rays emanating from the origin,
which amounts to imposing strict IRn+-copositivity ofC:

p′Cp > 0 for all p ≥ o with p 6= o .

This property implies that also problem (4.12) is bounded from below.

THEOREM 5 Assume thatC is strictly IRn+-copositive. Then local and global
solutions of (4.12) and (1.1) withA = γee′ − C are related as follows (again
chooseγ so thatA has no negative entries):

(a) If x ∈ 1 is a local solution of (1.1), i.e., a local minimizer ofg(x) = x′Cx
on1, thenp = (1/g(x))x is a local solution of of (4.12).

(b) If p ≥ o is a local solution of (4.12), thenx = (1/e′p)p is a local solution
of of (1.1).

(c) The objective values in cases (a) and (b) are related by

1

g(x)
= −2h(p) .

Hence a global solution of (4.12) corresponds to one of (1.1), and vice versa.

Proof. (a) For arbitraryp ≥ o with p 6= o let8(p) = (1/e′p)p. Then8 maps the
domain indicated continuously on1, and henceV = 8−1(U) is a neighbourhood
of p = (1/g(x))x if U is a neighbourhood ofx in 1 satisfyingg(x) ≥ g(x) for all
x ∈ U . We now claim thath(p) ≥ h(p) for all p ∈ V . Indeed, usingp′Cp > 0 and
some algebra, it is easy to derive from[p′Cp− e′p]2 ≥ 0 the inequality

h(p) ≥ − (e
′p)2

2p′Cp
for all p ≥ o with p 6= o . (4.13)
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Now g(x) ≤ g(8(p)) = (1/(e′p)2)g(p) = (−1
2)[−((e′p)2/2p′Cp])−1 so that

by (4.13)

− 1

2g(x)
≤ h(p)

for all p ∈ V . What remains to show is the assertion in (c). But this is immediate
from e′x = 1.
(b) If p is a local solution of (4.12), then necessarily also the Karush-Kuhn-Tucker
conditions are satisfied due to linearity of the constraints. Hence, there is a vector
r ≥ o such thatr ′p = 0 and∇h(p) = Cp − e= r , which in turn entailsg(p) =
p′Cp = e′p andh(p) = −1

2
e′p. On the other hand, by definition ofx we now get

g(x) = 1

(e′p)2
g(p) = 1

e′p
,

and thus again the relation in (c) is established. Next define9(x) = 1
g(x)x which

maps1 continuously into the nonnegative orthant. Hence,9(x) = (e′p)x = p
implies thatU = 9−1(V ) is a neighbourhood ofx in 1 provided thatV is one of
p in the positive orthant such thath(p) ≥ h(p) for all p ∈ V . Consequently,

− 1

2g(x)
= h(p) ≤ h(9(x)) = 1

2[g(x)]2g(x)−
1

g(x)
e′x = − 1

2g(x)

for all x ∈ U , which shows (b). The remaining assertion in (c) is immediate.2

5. The search for a maximum weight clique

As an important application for standard QPs let us address the search for a maxi-
mum weight clique. For convenient reference, let us start with the unweighted case.
Consider an undirected graphG = (V,E) with n nodes. AcliqueS is a subset of
the node setV which corresponds to a complete subgraph ofG (i.e., any pair of
nodes inS is an edge inE , theedge set). A cliqueS is said to bemaximalif there is
no larger clique containingS. A (maximal) clique is said to be amaximumclique
if it contains most elements among all cliques. For a concise pre-1995 survey on
the maximum clique problem see [47].

Motzkin and Straus showed in [41] that(1− f ∗)−1 is the size of a maximum
clique if f ∗ denotes the optimal objective value of the standard QP (1.1) with
A = AG, the adjacency matrix of the graphG, i.e. of

f (x) = x′AGx→ max! subject tox ∈ 1. (5.14)

This approach has served as the basis of many clique-finding algorithms and also
has been used to determine theoretical bounds on the maximum clique size [16,
19, 28, 46, 49]. However, since the (local) solutions of (5.14) lack strictness, it
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is difficult to identify a maximum clique from the optimal objective valuef ∗ of
(5.14). In a different approach followed in [13, 14, 16, 18] with promising empirical

results, the regularized version̂AG = AG + 1

2
In is used instead ofAG in (5.14),

whereIn denotes then× n identity matrix:ÂG = [aij ]i,j∈V with

aij =


1
2 if i = j;
1 if (i, j) ∈ E;
0 otherwise.

(5.15)

For problem (1.1) withA = ÂG from (5.15),x is a local solution to (1.1) if and
only if x = 1/k

∑
i∈S ei, whereS is a maximal clique of sizek. Then the objective

is x′ÂGx = 1− (1/2k). Hence,S is a maximum clique ofG if and only if x is the
global solution to (1.1).

Now let us proceed to the weighted case. Given an undirected graphG = (V,E)
with a weight vectorw = [w1, . . . , wn]′ of positive weightswi associated to the
nodesi ∈ V, every cliqueS in G has a weightW(S) = ∑i∈S wi. The maximum
weight clique problem (MWCP) consists of finding a clique in the graph which
has largest total weight (note that the maximum weight clique does not necessarily
have largest cardinality). It is clear that the classical unweighted version turns out
to be a special case when the weights assigned to the nodes are all equal, and
for this reason the MWCP has at least the same computational complexity as its
unweighted counterpart (but see [2, 4] for classes of graphs for which MWCP is
solvable in polynomial time).

The MWCP has important applications in fields such as computer vision, pat-
tern recognition and robotics, where graphs are employed as a convenient means of
representing high-level pictorial information [5]. Graphs arising in these applica-
tions often contain numerical attributes on their nodes and/or edges. In these cases,
the matching problem becomes one of finding a maximum weight clique in the so-
called association graph (see, e.g. [31, 54]). Among the many approaches to attack
the MWCP are [1, 3, 37, 42, 43, 45], to mention just a few (see also [17, 35] for a
more detailed account).

In a recent paper, Ramana and his coworkers [29] exploited an idea of Lovász
in considering the following class of symmetricn× nmatrices: let

M(G) =
{
(bij )i,j∈V : bij ≥ bii + bjj2

if (i, j) /∈ E , bij = 0, otherwise

}
,

and put

M(w,G) =
{
B = (bij )i,j∈V ∈M(G) : bii = 1

wi
andbij = bji for all i, j

}
.

They use the standard QP (1.1) withA = γee′ − B for anyB ∈ M(w,G) (again
chooseγ so thatA has no negative entries) in that they show that the optimal
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objective value of the program

x′Bx→ min ! subject tox ∈ 1 (5.16)

equals 1/W(S∗) for anyB ∈M(w,G), whereS∗ is a clique with maximum weight.
Still the difficulty remains to identifyS∗ from a solutionx∗ of (5.16).

Moreover, the problem in this formulation (5.16), with a matrixB drawn from
the Motzkin–Straus classM(w,G), has somestructural drawbacks. One of them
is that maximal cliquesS having less than maximum weight are not necessarily
reflected by local solutions to (5.16) for everyB ∈ M(w,G). As an elementary
example consider the graph consisting of just two disconnected nodes with differ-
ent weights, where the objective in (5.16) can be a non-constant affine function
although both singletons are maximal cliques. Hence, a major drawback is the
lack of one-to-one correspondence between local solutions to (5.16) and maximal
cliques. This is also reflected by the occurrence of jamming during local opti-
mization procedures based on the replicator dynamics mentioned at the end of
Section 3.

Therefore, a regularized variant of the formulation is proposed here, for which it
is possible to sharpen the above results. Another advantage of the regularization al-
ready indicated is that spurious solutions (i.e. those from which one cannot extract
the cliques directly), which can occur with the Motzkin–Straus class and which
are discussed in detail in [17], are automatically prohibited with the proposed
alternative approach.

Now, instead of the Motzkin–Straus classM(,G)w here a different classC(w,G)
of matrices is considered to be used as input data for problem (5.16): let

C(G) = {(cij )i,j∈V : cij ≥ cii + cjj if (i, j) /∈ E , cij = 0, otherwise
}
,

and consider

C(w,G) =
{
C = (cij )i,j∈V ∈ C(G) : cii = 1

2wi
andcij = cji for all i, j

}
.

For the unweighted case wherew = e, this regularization goes back to a differ-
ent characterization of maximal cliques by Comtet [21], and has been thoroughly
studied in [13]. Numerical experiences with this approach on a larger scale are re-
ported in [16, 18]. The classC(w,G) represents a natural extension to the weighted
case.

By contrast to the Motzkin–Straus classM(w,G), we can prove for the Comtet
classC(w,G) again the one-to-one correspondence of strict local solutions of
(5.16) and cliquesS, if B ∈ M(w,G) is replaced with a matrixC ∈ C(w,G).
This is done as in the unweighted case, by just adapting the arguments in [29] to
this more appropriate setting. Furthermore, it will be shown below that in contrast
to the Motzkin–Straus class, the occurrence of spurious solutions can be ruled out:
everylocal solution to (5.16) withC ∈ C(w,G) is strict and necessarily coincides
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with theweighted barycenterxS ∈ 1◦S of 1S – recall definitions (3.7) and (3.8) –
which is a vector with coordinates

xSi =
{
wi/W(S) if i ∈ S ,
0 otherwise.

For the proof of this result we need the following inequality which in its essence
is used already by [29], but forM(w,G) rather than forC(w,G). Here, a simple
argument is provided for both cases:

PROPOSITION 6 If S is a clique andy ∈ 1S then

2y′Cy = y′By ≥ 1/W(S)

for all B ∈ M(w,G) and all C ∈ C(w,G). Equality is obtained if and only if
y = xS .

Proof.Denote by〈., .〉w,S the Shahshahani inner product (cf. [30]):

〈x, y〉w,S =
∑
i∈S

xi yi

wi
, x, y ∈ IRn ,

and by‖x‖w,S =
√〈x, x〉w,S the corresponding pseudo-norm. Then〈xS, y〉w,S =

1/W(S) for anyy ∈ 1S and hence also‖xS‖2w,S = 1/W(S). By the inequality of
Cauchy, Schwarz and Bunyakovsky,∑

i∈S

y2
i

wi
= ‖y‖2w,S ≥ 〈xS, y〉2w,S ‖xS‖−2

w,S = 1/W(S)

with equality if and only ify = xS (recall thaty ∈ 1S always). On the other hand,
if S is a clique andy ∈ 1S, then

2y′Cy = y′By =
∑
i∈S

y2
i

wi

for anyB ∈M(w,G) and anyC ∈ C(w,G), which shows the assertion. 2

THEOREM 7 Let G be an arbitrary graph with positive weight vectorw ∈ IRn,
and consider a matrixC ∈ C(w,G) in place ofB for problem (5.16). Then the
following assertions hold:

(a) A vectorx ∈ 1 is a local solution to problem (5.16) if and only ifx = xS ,
whereS is a maximal clique.

(b) A vectorx ∈ 1 is a global solution to problem (5.16) if and only ifx = xS ,
whereS is a maximum weight clique.

Moreover, all local (and hence global) solutions to (5.16) are strict.
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Proof. Suppose thatx = xS whereS is a maximal clique. Then for allr ∈
V \ S we have(i, r) /∈ E for at least onei ∈ S and hence(Cx)r ≥ (1 +
wi/wr)/[2W(S)] > 1/[2W(S)], entailing forA = ee′ − C

(Ax)r = 1− (Cx)r < 1− 1/[2W(S)] = 1− (Cx)j = (Ax)j = x′Ax

for all j ∈ S (the last equality follows byx ∈ 1S). Now suppose thaty ∈ 1
satisfiesy′Ax = x′Ax. Then the strict inequalities above entailyr = 0 for all
r /∈ S, i.e. y∈ 1S . Hence, by Proposition 6 and the above arguments,

x′Ay = y′Ax =∑j∈S yj (x
′Ax) = x′Ax = 1− 1

2W(S)
≥ 1− y′Cy = y′(ee′ − C)y = y′Ay

(5.17)

with equality only if y = xS = x, so thatx satisfies the ESS property forA.
Theorem 2 now yields strict local optimality ofx. Next suppose thatx is a local
solution to (5.16). LetS = {i ∈ V : xi > 0} be the support ofx and assume that
S is no clique (hencex is no vertex), which means that there arei, j ∈ S such that
i 6= j and(i, j) /∈ E , which by definition ofC(w,G) entails the strict inequality

cij + cji ≥ 2[cii + cjj ] > cii + cjj .
Now designate byv the vector with coordinates

vk =
 1 if k = i
−1 if k = j
0 otherwise

putx(α) = x+αv for α ∈ IR, and denote bys the straight lines = {x(α) : α ∈ IR}.
Then the objective functionx′Cx is strictly concave alongs, since

[x(α)]′C[x(α)] = x′Cx+ 2α x′Cv+ α2[cii + cjj − cij − cji] .
On the other hand, the straight lines passes the relative interior1◦S in x = x(α = 0)
and therefore its intersection with1 is a segment containingx in its relative inte-
rior, which is absurd in view of local optimality ofx for (5.16) and strict concavity.
HenceS has to be a clique. Now joinx with xS by a straight line and repeat the
preceding arguments. Then Proposition 6 yieldsx = xS . Finally, S has to be a
maximal clique. Indeed, suppose thatT is a larger maximal clique containingS.
By positivity of weights, we haveW(T ) > W(S). Proposition 6 shows

[xS]′C[xS] = 1/[2W(S)] > 1/[2W(T )] = [xT ]′C[xT ] .
Now join xS andxT with a straight line, which intersects1T also in points of the
form (1−α)xT +αxS with α < 0 close to zero. Quadraticity of the objective along
this line; local optimality ofx = xS ; and optimality ofxT on the entire face1T
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yields a contradiction. This establishes property (a), and the remaining assertions
follow as simple consequences. 2

The Comtet classC(w,G) is isomorphic to the positive orthant in
(
n

2

) − e di-
mensions wheree is the cardinality ofE . This class is a polyhedral pointed cone
with its apex given by the matrixC(w) with entries

cij (w) =


1

2wi
if i = j ,

1
2wi
+ 1

2wj
if i 6= j and(i, j) /∈ E ,

0 otherwise.

(5.18)

Observe that in the unweighted case,C(e) = ee′−ÂG = ÂG, the Comtet-regularized
adjacency matrix of the complement graphG. This reflects the elementary property
that an independent set ofG is a clique ofG. So, while the local maximizers of
x′ÂGx over1 are exactly the barycentersxS of maximal cliquesS of G, the local
minimizers ofx′ÂGx over1 are exactly the barycentersxT of maximal independent
setsT of G. Note that within the Motzkin–Straus classM(e,G), there is no matrix
with this straightforward interpretation.

It can be shown [18] that all principal minors ofC(e) are not vanishing, so that
jamming under the replicator dynamics is prevented due to Theorem 3. Hence, for
A = ÂG as specified in (5.15), the algorithm sketched in Section 3 is almost surely
finite. Example 2.2 in [32] shows that one cannot hope for the same nice result
in the program (5.14). Of course, one could try to transfer this to the weighted
case, and this approach could be backed by the observation that for smalln ≤ 3,
the matricesC(w) are all non-singular for all choices of positive weight vectors
w. Also, if G is complete, one can show thatC(w) is non-singular, regardless of
the size ofn. Admittedly, all these cases are of restricted interest in real-world
applications.

However, for general graphsG and (irrational) weights this property is not al-
ways satisfied, as the tridiagonal 4×4-matrixC(w) with w = [1,1,2/(7+√45),
2/(7+√45)]′ shows.? On the other hand, an (intelligent) grid search over integer
values of 1/2wi up to 1000 for tridiagonal 4×4-matrices did not yield any singular
matrix of that kind, which might suggest that any matrixC(w) with rationalwi is
non-singular. To the best of my knowledge, I am not aware of any clue to this
question. But even ifC(w) were singular, this does not alter the desired one-to-one
correspondence between local solutions of (5.16) and suitable maximal cliques as
in Theorem 7.

6. Portfolio selection as a standard QP

The familiar mean/variance portfolio selection problem (see, e.g. [39, 40]) can be
formalized as follows: suppose there aren securities to invest in, at an amount
? I owe this example to A. Neumaier.
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expressed in relative sharesxi ≥ 0 of an investor’s budget. Thus, the budget
constraint readse′x = 1, and the set of all feasible portfolio (investment plans) is
given by1. Now, given the expected returnmi of securityi during the forthcoming
period, and ann × n covariance matrixV across all securities, the investor faces
the multiobjective problem to maximize expected returnm′x and simultaneously
minimize the riskx′V x associated by her decisionx.

One of the most popular approaches to such type of problems in general appli-
cations is that the user prespecifies a parameterβ which in her eyes balances the
benefit of high return and low risk, i.e. consider the parametric QP

fβ(x) = m′x− βx′V x→ max! subject tox ∈ 1. (6.19)

Note that for fixedβ, this is again a standard QP (cf. Section 1). Moreover in theory
the matrixV is, as an exact covariance matrix, positive semidefinite (although it
could be singular in many applications, see [40]), so that (6.19) is a convex prob-
lem. Hence in the algorithm in Section 3 the escape step would be superfluous, so
there were no repetitions (note that the transformation proposed in Section 1 could
destroy positive semidefiniteness on the whole of IRn, but the objective function
would still be concave over1). On the other hand, securities usually are highly
correlated, and in time-series analysis one frequently encounters the situation that
some of the most reliable estimatorsṼ of the unknown covariance matrixV lack
semidefiniteness properties [51, pp. 134ff]. More recently, also the econometric
community has been aware of this phenomenon [44], which of course is a nuisance
but nevertheless can be handled by the proposed procedure. Anyhow, the question
remains how to chooseβ. In finance applications, the notion of market portfolio is
used to determine a reasonable value for this parameter. This emerges more or less
from an exogenous artefact, namely by introducing a completely risk-free asset
which is used to scale return versus risk. For details see, e.g., Chapter 3 of [33].

Following a recent result of Best and Ding [8] who consider the problem

max
β>0

max
x∈1

1

β
fβ(x) , (6.20)

also a purely endogenous derivation of market portfolio seems to be possible: they
show how optimal solutions(β∗, x∗) for (6.20) emerge from a single standard
QP (1.1) with, e.g.A = 2mm′ − V . Hopefully some empirical results with this
approach on the Austrian stock market can be reported soon.

Of course, there are many approaches to solve the parametric QP (6.19), e.g.
in [8, 40]. Given we know the solutions as specified in [8]

x∗(β) = gi + βhi , if βi−1 < β < βi , i ∈ {1, . . . , t}
with 0 = β0 < β1 < . . . < βt = ∞ and known vectorsgi andhi, it is natural to
ask which of the investor’s utility structure would yield the same outcome [20, 27].
In the present context, this question (referring to a nonparametric function class
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giving the same solution) can be rephrased as a typical application of hypersensi-
tivity analysis in connection with composite quadratic programming, which will be
addressed in a forthcoming paper [22].
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